Hard
Given an unsorted integer array nums
, return the smallest missing positive integer.
You must implement an algorithm that runs in O(n)
time and uses constant extra space.
Example 1:
Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.
Example 2:
Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.
Example 3:
Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
(define/contract (first-missing-positive nums)
(-> (listof exact-integer?) exact-integer?)
(let* ((len (length nums))
(vec (list->vector nums)))
(define (swap i j)
(let ((temp (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j temp)))
(for ([i (in-range len)])
(let loop ()
(let* ((num (vector-ref vec i))
(pos (- num 1)))
(when (and (> num 0) (<= num len) (not (= (vector-ref vec pos) num)))
(swap i pos)
(loop)))))
(let find-missing ((i 0))
(cond
((= i len) (+ len 1))
((not (= (vector-ref vec i) (+ i 1))) (+ i 1))
(else (find-missing (+ i 1)))))))