Easy
You are climbing a staircase. It takes n
steps to reach the top.
Each time you can either climb 1
or 2
steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1 step + 1 step
2 steps
Example 2:
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1 step + 1 step + 1 step
1 step + 2 steps
2 steps + 1 step
Constraints:
1 <= n <= 45
(define (clmHelp n hTable)
(cond
; base cases
((= 1 n) 1)
((= 2 n) 2)
((hash-ref hTable n #f) (hash-ref hTable n))
; inductive case
(else
(let*
; the local variables
(
(a (clmHelp (- n 1) hTable))
(b (clmHelp (- n 2) hTable))
(numPos (+ a b))
)
; the body
(hash-set! hTable n numPos)
numPos
)
)
)
)
(define/contract (climb-stairs n)
(-> exact-integer? exact-integer?)
(local
; local definitions
((define hTable (make-hash)))
; function body
(clmHelp n hTable)
)
)